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Abstract—The reaching law approach comprises of first 
specifying the required evolution of the sliding variable. Then, a 
sliding mode controller that enforces this evolution is designed. 
The main advantage of this method with respect to “classical” 
sliding mode control is better control of the plant dynamics and 
state constraints during the reaching phase. In this paper, a 
review of a number of new works on reaching laws for discrete 
time systems is presented. The differences and similarities 
between them are discussed. 
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I.  INTRODUCTION 

Sliding mode control is a well-developed method that is 
suitable for a large spectrum of non-linear, time-varying, 
uncertain systems. Its main advantages are the robustness with 
respect to external disturbances and efficient implementation. 
Sliding mode control was at first proposed for continuous time 
plants. Nonetheless, as in modern days the controllers are 
almost always implemented in digital hardware 
(microcontroller, DSP, PLC, etc.), sliding mode control for 
discrete time systems quickly became a crucial topic of 
research. The main concept in sliding mode control is to 
choose a hypersurface in the state space to which the motion of 
the state (representative point) will be confined. The shape and 
orientation of this hypersurface will determine the dynamic 
behavior of the obtained closed loop system. A switching 
variable is a notion closely related to the chosen hyperplane. 
This variable is equal to zero if the representative point is on 
the hypersurface, is positive for states on one side of the 
hypersurface and negative for states on the other side. The 
absolute value of this variable increases as the state is farther 
away from the hyperplane.  

A controller is derived that, relying on the value of the 
sliding variable i) in finite time will make the representative 
point reach the hypersurface, in what is known as a reaching 
phase, ii) maintain the representative point on the hypersurface 
(or in its immediate neighborhood) during the so-called sliding 
phase. This problem can be solved using one of two basic 
approaches. The primary one starts by putting forward a 
controller, and then demonstrating that the above requirements 
are satisfied if it is applied. The latter manner relies on the 
reaching law, and is the focus of this survey. Using this 
technique the arrangement of operations is in some sense 

inversed. It begins with specifying the reaching law, namely 
the required convergence of the sliding variable to zero. For 
continuous time plants this is typically a relation between the 
time derivative of the switching variable and its present value. 
For discrete time plants, the reaching law generally describes 
the desired value of the switching variable in the next time 
instant based on the present value of this variable. Then, a 
controller is derived, that will ensure that the sliding variable 
evolves in accordance with the reaching law. 

The reaching law methodology has two main advantages. 
Firstly, after designing the controller there is no need to prove 
that sliding mode is ensured, as this follows directly from the 
reaching law. Secondly, the convergence of the state to the 
switching hypersurface is explicitly taken into account, which 
allows for better control of system dynamics and state 
constraints during the reaching phase. 

II. SWITCHING REACHING LAWS 

The reaching law technique was first postulated in [15] for 
continuous time plants. Three reaching laws: power rate, fixed 
rate and fixed plus proportional rate were proposed and 
compared. Then the authors in [16] extended their results to the 
discrete-time case. As in discrete systems, the ideal sliding 
motion cannot be enforced, they proposed a definition of a 
quasi-sliding motion, which is expressed in the following three 
requirements: 

1) The representative point must progress monotonically 
toward the sliding hypersurface from any initial position and 
in finite time cross it.  

2) Following the first crossing of the switching hypersurface, 
the state of the plant must pass through it subsequently, in 
every following discrete step.  

3) The amplitude of the oscillations resulting from this „zig-
zag” motion cannot increase, and the representative point must 
remain in a known neighborhood of the sliding hypersurface. 

Next, the authors postulated a reaching law in which the 
convergence rate is governed by two terms: one constant, and 
one proportional to the present value of the switching variable 
(analogous to the “fixed plus proportional” reaching law 
developed in [15]). The postulated evolution of the switching 
variable for the perturbed plant is 
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where q ∈ (0, 1/T) and ε > 0 are design parameters. The terms 

S , F  are the unknown effects of the modelling uncertainties 
and external disturbances on the s variable respectively. The 

terms S1, F1 represent the mean values of S , F  and S2, F2 
correspond to the maximum deviation of those terms from their 
means. 

It has been demonstrated in [2], that the parameters of (1) 
must satisfy the condition 

 ( ) 2 22 1qT T qT S Fε − > +     (2) 

in order to assure the existence of quasi-sliding motion.  
The reaching law (1) is frequently utilized in the current 

works both in its original [19], [25], [26], [32], [38] as well as 
modified [17], [22], [29], [33], [34], [36], [40] form. 

In [38] the influence of time delays on discrete time 
systems was analyzed. A discrete time state predictor was 
proposed. Then it was combined with a sliding mode controller 
based on (1). The results were demonstrated by computer 
simulations. 

On the other hand, in the work [25], the control of a so-
called smart structure was considered. Such a structure consists 
of a host structure on which sensors, actuators and controllers 
are placed. The main aim of control is to limit the oscillations 
whose frequencies are close to one of the resonant frequencies 
of the construction. In order to achieve this goal, a modified 
quadratic control quality criterion was proposed. The 
oscillations that are close to the resonant frequencies have a 
larger impact on this criterion, than other oscillations. In order 
to create an optimal controller minimizing this criterion, the 
state space representation of the plant was extended, 
incorporating the outputs of bandpass filters. Using this 
extended representation, a “classical” LQR criterion is applied, 
with increased weights corresponding to the outputs of the 
filters. Moreover, as in the considered systems, the states 
(deformations of the structure elements) are difficult to 
measure, a multirate output feedback technique, that estimates 
the states based only on output information, was used. The last 
step was the design of the sliding mode controller, which was 
performed using the reaching law proposed in [16]. 
Experimental tests on a laboratory stand, as well as computer 
simulations were performed, to support the theoretical results. 

In the paper [19], the reaching law postulated in [16] was 
also combined with the multi-rate output feedback, to remove 
the necessity of measuring every state variable. As in this 
approach, the exact state is replaced by its estimate, it leads to 
an increase of the width of the quasi sliding mode band. The 
authors calculate the new width. The operation of the algorithm 
is verified in computer simulations. Conversely, in [32] the 
reaching law put forward in [16] is applied to obtain a 
predictive sliding mode controller. 

In the work [26], the impact of the discretization period on 
sliding mode control of a MIMO system is considered. The 
authors first considered the scenario, in which every element of 

the feedback gain matrix changes between two values, in 
accordance with the sign of the corresponding switching 
variable. These values must not be too small as they have to 
counteract the external disturbances influencing the system, or 
too large (which is not true in control of continuous time 
plants), or they would result in crossing the sliding hyperplane 
and inducing oscillations in the system. The changes of both 
the upper and lower bound, with respect to the discretization 
time were calculated. As the discretization period tends to zero, 
the behavior of the plant gets closer and closer to the 
continuous one, and one of the bounds tends to ±∞. As the 
discretization period gets larger, this bound gets closer to the 
other one, which is mainly a function of the disturbances 
impacting the system. At a certain value of the discretization 
period, both bounds achieve the same value, thus it is 
impossible to assure stable sliding motion for larger 
discretization periods. The authors propose a control signal, 
which is a sum of linear feedbacks and a nonlinear function 
used to ensure convergence towards the sliding hyperplane, in 
spite of the disturbances influencing the system. Next, the 
authors propose two controllers, one based on the reaching law 
from [16] and the other on modifying the reaching law by 
introducing the saturation function in place of the sign 
function, to minimize induced oscillations. Finally, results of 
computer simulations of all the three controllers are presented. 

On the other hand, in [17] a reaching law was postulated, in 
which the speed of convergence of the switching variable is a 
certain function of its value. The function is proportional to s if 
the absolute value of s is small, which reduces chattering. The 
effect of disturbances on the plant controlled in this fashion is 
investigated, and the size of the neighborhood of the switching 
hypersurface, to which the state will converge is derived. As an 
illustrative case, the authors propose using a function that 
corresponds to the reaching law from [16] if the distance from 
the switching hypersurface is large, and a proportional function 
in close vicinity of the switching hyperplane. The results are 
verified by position control of a direct current motor, in which 
the impact of the discretization period on the control accuracy 
was also checked. 

The approach proposed in [17] was then built upon in [29], 
by introducing an additional integrator of the sliding variable. 
This allowed the DC motor servomechanism to follow a 
parabolic position trajectory. In order to prevent the integrator 
from saturating (which is known as windup), its action is 
activated only in close vicinity of the sliding hyperplane. 
Moreover, the authors compensate the disturbance using a 
feedforward action, which allows to follow a reference 
trajectory that depends on the third power of time. The authors 
calculate the steady state error analytically and compare it to 
the one obtained in [17]. 

In the paper [22] a sliding mode controller is used to 
stabilize the voltage in a DC power network. The authors first 
consider using the approach from [16], but this would result in 
excessive chattering. Therefore, they propose a modification of 
the reaching law in close vicinity of the sliding hyperplane. 
When the value of |s| drops below a certain threshold, the 
constant value ε in (1) is replaced by the term β|s(kT)|λ, where 
β and λ are constant parameters. Because this term decreases as 
the sliding variable tends to zero, this modification results in a 
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significant reduction of chattering. It is then demonstrated, that 
in case of no external disturbances, the quasi sliding motion 
defined in [16] is enforced. Moreover, as most of the reaching 
phase takes place outside of the sliding hyperplane vicinity, 
this modification does not noticeably increase the duration of 
the convergence to the sliding hyperplane. The action of the 
proposed controller was verified on a laboratory stand.  

On the other hand, the authors of [34] proposed the 
following reaching law 

( ) ( ) ( ) ( ) ( )1 sgns k T s kT qTs kT s kT T s kT ρ+ − = − −       . (3) 

The constant parameter ε in (1) is replaced by the term 
|s(kT)|/p. However, the equation (3) is overcomplicated, as its 
right hand side could be rewritten as –(q + 1/p)Ts(kT). This 
means, that there is no need of selecting q and p individually, 
as only the value (q + 1/p) will influence the controller action. 
Therefore, one can consider (3) as a modification of (1) in 
which ε = 0 and qT > 1 is allowed. The authors compare the 
reaching laws (1) and (3) in computer simulations. 

In the paper [36] the control of a PMSM speed is 
considered. It is assumed, that the position of the rotor is 
obtained from an encoder, and the angular velocity is estimated 
using the Euler method. A reaching law is proposed, that 
divides the state space into two regions. In the first one, which 
comprises of points that are farther from the hyperplane than a 
certain threshold value, the desired convergence rate of s is 
large. In the region closer to the hyperplane the desired 
convergence rate is reduced. This approach corresponds to 
altering (1), by setting q = 0 and altering ε between two values, 
determined by the magnitude of the switching variable. Using 
this approach, one can obtain short convergence time, as ε is 
large in the “outer” region, while still keeping chattering to an 
acceptable level, since ε is reduced in the vicinity of the 
hyperplane. These theoretical finds are verified experimentally 
on a test stand. 

In the work [40] the authors formulated the subsequent 
reaching law that is based on two power functions of the 
switching variable: 

 
( ) ( ) ( )

( ) ( ) ( ) ( )1 2

1

sgn sgn ,

s k T s kT qTs kT

T s kT s kT T s kT s kT
α βε ε

− − = − +  

− −      
 (4) 

where ε1, ε2 are positive parameters, q ∈ (0, 1/T), α ∈ (0, 1) 
and β > 1. One can observe, that equation (4) smoothly 
transitions between two different power reaching laws. When 
|s(kT)| < 1 the term with parameter α dominates, conversely if 
|s(kT)| > 1, then the term with parameter β obtains larger 
values. Moreover, parameter q, which was constant in all the 
above-mentioned works can take different values for |s(kT)| > 1 
and |s(kT)| < 1. The reaching law (4) can be viewed as an 
extension of the one proposed in [22]. The difference is that the 
transition between two convergence rates is more smooth. 
Moreover in the work [22], in one of the regions, the power 
function was replaced by a constant term. The authors 
demonstrated, that using (4) guarantees the existence of quasi 
sliding motion if there are no disturbances acting on the plant. 
Then, the two parts of the reaching phase are analyzed in more 
detail, the first one from the initial state to the neighborhood of 

s(kT) = 0 and the second one, from this vicinity to s(kT) = 0. In 
order to employ the equation (4) to real systems the authors 
added a neural network, in order to approximate the values of 
the disturbance, which in turn allows to compensate it. 
Extensive computer simulations were performed, in which four 
reaching laws were compared: law (1), single power reaching 
law (namely (4) setting ε2 = 0) and the reaching law (4) both in 
its base form as well as extended by disturbance estimation. 

A similar approach was used in [13], where the reaching 
law (1) is altered by exchanging the constant parameter ε with 
a function of the root of the absolute value of the switching 
variable, namely using (4) with ε1 ∈ (0, 1) and ε2 = 0. In 
computer simulations, the authors compare their approach with 
(1) and confirm that a significant reduction in quasi sliding 
mode band width is achieved. In [39] the reaching law used in 
[13] is applied in order to realize maximum power point 
tracking of a wind turbine. The sliding mode controller 
determines the duty ratio of the boost converter, which in turn 
affects the power drawn from the turbine. The designed 
controller is examined in contrast with a sliding mode 
controller without a reaching law, and the perturb and observe 
method in laboratory experiments. The wind turbine is 
“simulated” by an external induction motor, under control of its 
own microcontroller. The results show, that although all 
controllers converge to the maximum power point, the 
proposed approach offers the smallest voltage ripple and the 
shortest settling time. 

In the paper [33] the problem of disturbance estimation was 
considered. The reaching law (1) was extended by disturbance 
compensation, assuming that the disturbance rate of change is 
small. The authors have moreover omitted the necessity of the 
state crossing the switching hypersurface in each control step. 
Instead of this, they calculated the upper bound of time that 
separates two consecutive crossings of the hyperplane. Both of 
the modifications allowed to obtain a smaller size of the quasi-
sliding band than in [16], which plainly corresponds to better 
robustness of the plant with respect to perturbances. These 
claims have been verified in computer simulations.  

On the other hand, in [30], a sliding mode controller was 
used to control the speed of an asynchronous motor. To limit 
the maximum angular speed, a nonlinear hypersurface was 
selected. Next a control signal was calculated, that guarantees 
asymptotic convergence to the vicinity of this hypersurface. 
Computer simulations as well as experiments illustrate the 
advantages of the presented solution over the ones shown in 
[16] and [35]. The advantages lie mainly in reducing the 
oscillations of the torque generated by the motor. Nonetheless, 
the obtained results are not general, but are limited to the 
considered system. 

In [6] the authors proposed the subsequent reaching law 

 ( ) ( ){ } ( ) ( ){ }2
0

01 1 sgn
m

s kT ss k T e s kT s s kT−  + = − −         (5) 

The first expression on the right hand side of (5) decreases 
when the sliding variable value gets close to zero. This reduces 
the action of the switching term, and limits the undesirable 
chattering. Moreover, reaching law (5), in contrast to many 
previously presented ones, ensures an upper limit on the 
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switching variable rate of convergence. For many systems this 
corresponds to limiting the magnitude of the controller action. 
The reaching law (5) is also modified to be applicable to 
systems with parameter uncertainties and disturbances. The 
existence of the quasi sliding motion, and the uniform ultimate 
boundedness (assuming that s is chosen to obtain dead-beat 
dynamics in sliding mode) of the system are proven 
analytically. Finally, the authors compare their solution to the 
reaching law proposed in [16] in computer simulations of the 
nominal system, as well as the perturbed one. In both 
scenarios, the new approach results in a narrower width of the 
quasi sliding band as well as smaller values of IAE and ISE 
control quality criteria. Then in [7], the authors use a slightly 
modified form of reaching law (5), to control the flow of goods 
in a supply chain. The important properties, such as full 
consumer demand satisfaction are demonstrated in Matlab 
simulations as well as proven analytically. 

A relatively new and interesting research direction is the 
combination of the reaching law approach with sliding 
variables of higher relative order. In a “traditional” discrete 
time algorithm, the control signal affects the sliding variable 
after a single discretization period. Similarly, a r-th relative 
degree variable is influenced by the control signal only after r 
control steps. In this way, the values of s(k + 1), s(k + 2), …, 
s(k + r -1) are already determined at instant k and can be used 
to generate the control signal u(k). The choice of a higher order 
sliding variable can be either dictated by a lack of measurement 
of state variables that are directly influenced by the control 
signal, or can be a conscious choice of the control designer.  

In [5], the authors first proposed modifying the reaching 
law (1) by introducing a function h(s) in place of the term (1 –
 qT), where h(s) = 1 for |s| ≥ s0 and h(s) = |s|/s0 for |s| < s0, 
where s0 is a positive design parameter. This modification 
allows to limit the rate of convergence of the sliding variable, 
and thus also the control signal, for big initial values of s. The 
authors demonstrated, that using their approach ensures, that 
the quasi-sliding motion as specified in [16] exists. The region 
around the desired value, to which the output of the system will 
converge was also analyzed and derived. The reaching law was 
adopted to the case of second order switching variable s2, in 
such a way, that the favorable properties mentioned earlier still 
hold. The advantages of the second order sliding variable 
control, namely smaller quasi-sliding mode band and smaller 
output error, were demonstrated in computer simulations. 

In [4] the reaching law (1) was generalized for arbitrary 
degree sliding variables. The choice of sliding variable of 
degree r was facilitated by a transformation of the system to the 
Frobenius form. Moreover a time-varying sliding hyperplane 
has been used to eliminate the reaching phase. Then it was 
demonstrated, that the increase of sliding variable relative 
degree results in better control precision, namely smaller errors 
of state variables and narrower width of the quasi-sliding band. 

III. NON-SWITCHING REACHING LAWS 

In the work [3], the description of a discrete time quasi 
sliding motion proposed in [16] was modified, by removing the 
requirement of crossing the hypersurface in every successive 
discretization step. It has been assumed, that the external 

disturbance and the effect of parameter uncertainties satisfy the 
matching conditions. The following reaching law was proposed 

 ( ) ( ) ( )01 1ds k T d kT d s k T+ = − + +       , (6) 

where d(kT) is the effect of external disturbances and 
modelling uncertainties on the switching variable, d0 is the 
mean value of d(kT) and function sd(kT) must satisfy the 
following three conditions: 

1) The initial value sd(0) = s(0). 

2) The function sd(kT) never changes its sign. 

3) The value of |sd(kT)| for |sd(kT)| > 2δd decreases at each step, 
at least by 2δd, where δd is the greatest possible difference 
between d(kT) and d0. 

According to the third requirement, at some finite k* the 
inequality |sd[(k* − 1)T]| ≤ 2δd will be satisfied and then 
sd(kT ≥ k*T) = 0. In a presented example sd(kT) was chosen as a 
linear function decreasing to zero. It has been demonstrated, 
that such a strategy ensures better robustness with respect to 
disturbances, than (1). Moreover, a disturbance compensation 
term was added to the proposed strategy, which is built on the 
assumption of bounded change rate of disturbance. It has been 
verified, that this allows to further improve the robustness. 

In [12] the reaching law proposed in [3] was extended to 
switching variables with relative degree two. Moreover, a 
modification of equation (1) for relative degree two switching 
variables was presented. It has been demonstrated, that this 
method can enhance the robustness of the plant in both cases. 

The work [18] also builds upon the results of [3]. The 
original method required measurement of the whole state 
vector, which can be difficult for some plants. Because of this, 
the authors of [18] combined it with the multirate output 
feedback technique. This replaces the state vector with its 
estimate, and slightly increases the quasi sliding band. The new 
size of the band was calculated, and the strategies were 
compared using computer simulations. The paper [24] presents 
results that are similar to [25] which were covered earlier. The 
difference is that instead of (1), the reaching law (6) was used. 
The authors demonstrated that this change allows for better 
damping of the oscillations. 

Another modification of the reaching law (6) was proposed 
in the work [37], in which the value of sd(kT) is related to the 
current value of s(kT). This allowed to further shorten the 
duration of the reaching phase. However, it must be said, that 
the disadvantage of this approach is a reduction of robustness 
during the reaching phase. 

In the work [8] both switching and non-switching reaching 
laws were analyzed. Firstly, a modification of reaching law (1) 
was proposed. The fixed convergence rate q was replaced by a 
function of the switching variable. The value of this function 
diminishes as the state of the system is farther away from the 
sliding hyperplane. This allows to lessen the greatest value of 
the controller action, without increasing the chattering in the 
system. Moreover, the obtained reaching law was further 
altered, by removing the discontinuous terms. In this way, the 
switching quasi sliding motion is no longer ensured. However, 
as was demonstrated in the work, this also scales down the size 
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of the quasi sliding mode band, and therefore enhances the 
robustness of the system. In the paper [9], the non-switching 
reaching law postulated in [8] was utilized to control data flow 
in a communication network. It has been shown, that this 
approach ensures some important practical properties, such as 
preventing the overflow in data buffers. On the other hand, in 
[10] the same reaching law was applied to the problem of 
generating resupply orders in a logistic system. 

In the paper [21] a sliding mode controller for oscillation 
damping of fluid in a tank was considered. The fluid motion 
was modelled by a pendulum. The following exponential 
reaching law was proposed 

( ) ( )( )( ) ( )1 21 exp 1s k T s kT s kTβ β+ = − +   , (7) 

where β1, β2 are positive parameters, the sum of which does not 
exceed 1 and β2 < β1. The reaching law (7) was compared to 
the ones presented in [3] and [37] using computer simulations. 
It has been shown, that (7) offers the smallest values of the 
Euclidean norm and maximum value of the controller effort. In 
[20] the reaching law (7) is used to design two sliding mode 
controllers for a two axis (one controller per axis) gimbal 
infrared scanner positioned on a missile. The scanner is made 
to follow a spiral trajectory to find the target of the missile in 
the final part of its flight. The designed controllers are then 
augmented by a disturbance estimator to improve the system 
robustness. The feasibility of the approach is tested in 
computer simulations. 

 In [23] the authors propose the following reaching law 

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ){ }
1 1 sgn

2 1 2 2 .T

s k T qT kT s kT s kT k

c f kT f k T f k T

λ+ = − Φ − Φ +      

+ − − + −      
(8) 

in which q ∈ (0, 1/T), λ > 0. The nonlinear term Φ(k) ∈ (δ,1) 
for some δ > 0, tends to one, as s(k) gets smaller, in order to 
achieve a better compromise between fast reaching phase and 
small chattering. The expression in the second line of (8) is 
used for better compensation of disturbance f (dimf = n × 1), 
under the assumption, that the second difference of f is 
bounded. This is an interesting approach, as in most works 
only bounds on the first difference of disturbance are 
considered. It is worth to point out, that in spite of using a 
reaching law that is somewhat similar to (1), the authors of 
[23] do not require the state of the plant to cross the switching 
hypersurface in each step. The authors, using computer 
simulations and laboratory tests of a piezoelectric actuator 
compare their approach to the one proposed in [33]. The 
results confirm a better robustness of the proposed algorithm. 
 Similarly as in [1] and [3], in the work [31] the authors 
omitted the requirement of crossing the sliding hypersurface in 
every consecutive step of the quasi sliding mode. The 
subsequent conditions for enforcing the quasi sliding mode 
were presented: 

 

( ) ( ) ( )
( ) ( ) ( )
( ) ( )
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ε
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≤  + ≤  

 (9) 

According to the authors, if (9) hold, finite time convergence to 
the region |s(kT)| ≤ ε is guaranteed. However, after studying the 
above conditions in more detail, it is clear, that they alone do 
not guarantee the convergence to a neighborhood of the 
switching hypersurface at all. It can be the case, that 

( )
( ) ( ){ }lim 1 0

gs kT s
s k T s kT

+→
+ − =    for some sg > ε. Then, if the 

initial value of the switching variable is greater than sg, the 
switching variable will converge asymptotically to sg. 
Therefore, the representative point will not enter the vicinity of 
the sliding hyperplane at all. An example of a reaching law, 
that satisfies conditions (9) is 

( )
( ) ( ) ( ) ( )

( ) ( ) ( )

1

sgn for

1 for

g g

g

s k T

s kT q s kT s s kT s kT s

q s kT s kT s

+ =  
  − − >    

− ≤

  (10) 

One can observe, that for any given value of the sliding 
variable, the absolute value of this variable in the next time 
instant is strictly lower. However, if the initial value of the 
sliding variable is outside of the band (–sg, sg), it will never 
enter this band, but will only monotonically converge to –sg, or 
sg. The subsequent reaching law is proposed: 

( ) ( ) ( ) ( )01 , sgnss k T s kT d x kT d d s kT+ − = − −       , (11) 

where d(x, kT) is the (not known) impact of the disturbance, d0 
is the mean value of this term and ds is the greatest possible 
discrepancy between d(x, kT) and its mean. Thus, (11) can be 
considered as a special case of (1), in which q = ε = 0 and the 
convergence is ensured only by overestimating ds. The action 
of the sliding mode controller designed according to (11) is 
demonstrated in computer simulations. 

In the work [11] a general form of a reaching law is 
postulated. It guarantees the convergence of the representative 
point (state) to a known region around s(kT) = 0 and remaining 
in this band. Unfortunately, the authors do not present the 
application of this rule to any control system, they only 
consider an abstract evolution of the sliding variable. 

A comparison of many above-mentioned control algorithms 
[1], [3], [14], [16], [17], [27] using servomechanism control as 
an example application was performed in the work [28]. 

IV. CONCLUSION AND FUTURE WORK 

In this work, a number of latest results on reaching law 
based sliding mode control for discrete time plants were 
discussed and compared. This approach has some important 
advantages, such as better control of system dynamics and state 
constraints during the reaching phase. Although this method 
was first proposed quite some time ago, many novel reaching 
laws, that are suited for the needs of particular control systems, 
still appear in the literature.  

One of the promising directions of future research seems to 
be the reaching laws for sliding variables with increased 
relative degrees. This methodology is able to reduce the size of 
the quasi sliding mode (thus enhancing the robustness of the 
plant), without requiring increased control magnitude. It can 
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also prove very useful if measurements of states directly 
influenced by the control signal are not available. 
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